化探知識
利用樣本排序方法比較化探異常識別模型的效果
文章來源:地大熱能 發(fā)布作者: 發(fā)表時(shí)間:2021-11-05 16:47:08瀏覽次數(shù):1990
地球化學(xué)異常的識別與提取一直是地球化學(xué)勘探的主要目標(biāo)(Reimann et al ., 2005 ;Grunsky ,2007).計(jì)算機(jī)技術(shù)尤其是GIS 技術(shù)在化探界的普及, 給區(qū)域化探異常數(shù)據(jù)處理、解釋與制圖帶來了勃勃生機(jī)(Grunsky , 2007).我國實(shí)施以水系沉積物為采樣對象的全國區(qū)域化探掃面計(jì)劃近30 年, 積累了豐富的高質(zhì)量的區(qū)域化探掃面數(shù)據(jù), 這些數(shù)據(jù)為近年來大量新礦床的發(fā)現(xiàn)提供了有益線索.近幾年, 同行學(xué)者致力于資料的二次開發(fā), 問題的焦點(diǎn)又回到了背景和異常識別上, 特別是弱緩異常的識別問題.
勘查地球化學(xué)數(shù)據(jù)具有極其復(fù)雜的不規(guī)則性, 蘊(yùn)含著地球化學(xué)場的豐富信息, 如:空間結(jié)構(gòu)性(各向異性)、尺度不變性等特征(鮑征宇等, 1999 ;Cheng ,1999a).在地質(zhì)情況復(fù)雜的區(qū)域內(nèi), 采用統(tǒng)一的異常下限值圈定異常的不合理性已經(jīng)成為勘查地球化學(xué)家的共識, 并提出了一些確定異常下限的新方法, 主要有異常襯度法、趨勢面法、子區(qū)中位數(shù)襯度濾波法(史長義等, 1999)、空間最優(yōu)U 統(tǒng)計(jì)量法(Cheng etal ., 1996 ;Cheng , 1999a)等.近些年來, 一些學(xué)者還探索用分形方法確定地球化學(xué)背景及異常(Cheng et al ., 1994 , 2000 ;Li et al ., 2003 ;韓東昱等, 2004), 其中局部奇異性分析方法是一種日益受到國際關(guān)注的新模型(Cheng , 1999b , 2006a ,2006b ;Chen et al ., 2007 ;Cheng and Ag terberg ,2008), 它用于指示異常的指標(biāo)來自模型的冪指數(shù)α, 稱為奇異性指數(shù), 記Δα=E -α, 這里E 表示空間維數(shù)(對二維地球化學(xué)圖E =2), 于是, Δα越大于0(即α越小于2), 則指示(正)異常強(qiáng)度越大.α和Δα是由局部鄰域上的多尺度計(jì)算而來, 可用來刻畫物質(zhì)(或能量)的相對富集或虧損(成秋明, 2008).應(yīng)用不同的化探數(shù)據(jù)處理模型, 可以得到不同的異常指示變量.這些變量可能服從不同的分布, 還可能具有不同的量綱, 如何對比這些異常指示變量對圈定異常效果的優(yōu)劣?
人們最為熟知的異常下限確定方法是由背景平均值加兩(或三)倍標(biāo)準(zhǔn)方差來確定, 從另一角度來看, 這種方法可視為對數(shù)據(jù)進(jìn)行了標(biāo)準(zhǔn)化變換, 得到一個(gè)無量綱的標(biāo)準(zhǔn)得分(記為k), k 越大于0 , 則(正)異常強(qiáng)度越大.異常襯度(記為CV)是指某一元素所形成的異常含量平均值與異常所在區(qū)域的背景平均值的比值, 它作為異常清晰度的量度而廣泛使用.CV 越大于1 , 則(正)異常強(qiáng)度越大.元素的含量值、CV 值、Δα值等異常指示變量, 由于它們的物理意義不同、統(tǒng)計(jì)分布特征不同, 難以直接比較.筆者注意到, 除元素的含量值、CV 值、Δα值自身之外,還有一個(gè)與分布特征無關(guān)的量, 這就是它們的樣本排序值.樣品觀測值經(jīng)某些數(shù)學(xué)變換, 如:標(biāo)準(zhǔn)化變換、正規(guī)化變換、平方根變換、對數(shù)變換后, 可以改變分布的類型、分布的形態(tài), 有助于增強(qiáng)異常, 但是其共同特點(diǎn)之一是這些變換不改變樣品的相對排序.
異常襯度法、趨勢面法等異常識別模型, 則會改變樣品排序.對同一個(gè)采樣樣品來說, 按不同的異常指示變量進(jìn)行排序, 它所處的序次可能相對穩(wěn)定、也可能發(fā)生較大變化, 這可在一定程度上體現(xiàn)出不同方法異常識別效果的趨同性或差異性.
當(dāng)化探取樣范圍覆蓋全區(qū)且每個(gè)取樣數(shù)據(jù)所代表的空間范圍相同時(shí)(對非規(guī)則采樣, 可經(jīng)空間插值實(shí)現(xiàn)), 由樣品的有序排列可容易換算為空間范圍,例如排序前2 .5 %的有序樣品與研究區(qū)2 .5 %的面積是相當(dāng)?shù)?對不同異常指示變量進(jìn)行排序后, 無論是對逐個(gè)樣品的比較, 還是對某一組有序樣品的比較, 它們都可視為在等面積意義下的比較.在尚未有礦產(chǎn)發(fā)現(xiàn)、研究程度較低的地區(qū)開展化探異常識別工作, 利用樣本排序方法可以簡便地確定最有潛力的地區(qū), 如用排序取值前2 .5 %的樣品來圈定研究區(qū)2 .5 %的范圍, 并通過與地質(zhì)構(gòu)造背景分析來比較不同方法之間異常識別效果的異同.在已有較多礦產(chǎn)發(fā)現(xiàn)的地區(qū), 還可借助證據(jù)權(quán)重法模型(A gterberg, 1989 ;Ag terberg et al ., 1993 ;Bonham-Carter , 1994), 通過化探異常所圈定的空間范圍與其所覆蓋或遺漏礦產(chǎn)兩者之間的空間相關(guān)關(guān)系來評價(jià)異常識別效果, 采用樣本排序值可克服分類標(biāo)準(zhǔn)不統(tǒng)一的困難, 使不同模型的異常識別結(jié)果都轉(zhuǎn)化成為等累積面積下的比較.
因此, 本文擬利用順序統(tǒng)計(jì)量思想, 選取元素含量、異常襯度、奇異性指數(shù)作為3 種代表性的異常指示變量, 先將其轉(zhuǎn)換成對樣品的排序序次, 再按排序值來進(jìn)行異常識別效果的比較.不同異常指示變量的樣本排序, 在高背景區(qū)、低背景區(qū)和有礦產(chǎn)出現(xiàn)位置處樣品各自有何特點(diǎn)? 用不同的異常識別模型來圈定相等的異常面積(例如占研究區(qū)2 .5 %面積),它們所確定的那些樣品各自在空間上是如何分布的? 與礦產(chǎn)分布的空間相關(guān)性如何? 本文將分別用排序值的X-Y plo t 圖和基于證據(jù)權(quán)法的學(xué)生t 統(tǒng)計(jì)量進(jìn)行比較分析.CV 和Δα圈定異常的更多異同之處(包括計(jì)算方法原理、多尺度識別效果等), 限于篇幅另文闡述.
1 樣本排序方法
順序統(tǒng)計(jì)量在數(shù)學(xué)上通常是指樣本值由小到大排序而得到的統(tǒng)計(jì)量, 它有著廣泛的應(yīng)用, 有些性質(zhì)不依賴于母體分布并且計(jì)算量很小, 使用起來比較方便.本文所指的樣本排序方法約定為:按變量指示異常性能從優(yōu)到劣進(jìn)行排序.以樣品數(shù)為n 的元素含量Z 的一組觀測值(z1 , z2 , …, zn)為例, 按觀測值從大到小排序z1 ≥z2 ≥ … ≥z n , 記排序序列R AN K(Z)=(1 , 2 , 3 , …, n), 最佳異常樣本的排序取值rank =1 , 最差異常樣本的rank =n (大寫R AN K 表示變量, 小寫rank 表示排序取值).若其中有兩個(gè)樣品的取值相同, 按上述約定其先后順序是任意的.為了避免對R ANK(Z)取值分類時(shí), 相同的觀測值z 處于不同的分級中, 進(jìn)一步約定:將那些重復(fù)的觀測值所對應(yīng)的多個(gè)有序排序值(ranks ,ranks +1 , … , rankt -1 , rankt)(n ≥t >s ≥1), 計(jì)算其排序的中位數(shù)并取整作為這一組相同觀測值共同的rank 值, 計(jì)算公式為rank =「(ranks +rank t)/2」(「」為取整符號).對CV 和Δα同樣是按降序排序得到對應(yīng)的順序值R ANK (CV)和R ANK (Δα), 若對奇異性指數(shù)α, 則需按升序確定.由于受樣品分析精度的限制, 元素含量值相等的樣品可能占有一定比例, 而CV 、Δα則一般無重復(fù)值出現(xiàn).
本文在異常識別效果對比中采用的是樣本的排序序次(也即樣本統(tǒng)計(jì)量的下標(biāo)索引), 而沒有用分位數(shù).對異常指示變量按其分位數(shù)進(jìn)行地球化學(xué)制圖時(shí), 盡管分類更加直接, 但在不同方法的對比中則相對繁瑣.分位數(shù)與異常指示變量具有相同的量綱,分位數(shù)q(u)通常是按變量從小到大排序計(jì)算, 且一般約定0 <u <1 , 對CV 和Δα來說, 需換算成上側(cè)分位數(shù)q(1 -u)才對應(yīng)于高異常樣品, 分位數(shù)很少用來與樣本觀測值建立一一對應(yīng)關(guān)系.分位數(shù)作為一種統(tǒng)計(jì)量, 常用q(0 .5)表示中位數(shù)(Q2 ), 用q(0 .25)和q(0 .75)分別表示第1 四分位數(shù)(Q1)和第3 四分位數(shù)(Q3), 區(qū)間[ Q1 ,Q3] 包含了50 %的不受特異值影響的數(shù)據(jù), 內(nèi)四分位數(shù)極差I(lǐng)QR =Q3 -Q1 .排序序次盡管從某種程度上損失了一定信息,但更易于不同方法之間的對比, 它直接表明了不同方法處理所獲取的異常的相對強(qiáng)弱, 不受量綱和分布特征的影響, 與樣品一一對應(yīng), 上側(cè)rank 值與累積面積成正比.地球化學(xué)數(shù)據(jù)作為一種典型的空間數(shù)據(jù), 在地理信息系統(tǒng)(GIS)支持下, 可通過“某變量在某樣品的rank 值※某樣品空間位置(x , y )※變量在某樣品的取值” 對應(yīng)關(guān)系來獲取異常指示變量的取值, 變量取值及rank 值的組合也即等效于確定了順序統(tǒng)計(jì)量取值和上側(cè)分位數(shù), 其中u =(rank -0 .5)/n(n 為樣本數(shù))(Martinez and Mar tinez, 2005).
2 數(shù)據(jù)來源和統(tǒng)計(jì)分布特征
研究區(qū)位于我國云南東南部的個(gè)舊及其周邊地區(qū), 地理范圍為東經(jīng)102°00′~ 103°30′, 北緯23°00′~ 24°00′, 面積約為18 096 km2(圖1).研究區(qū)的大地構(gòu)造位置位于濱太平洋構(gòu)造域與特提斯構(gòu)造域交界部位, 歐亞板塊、太平洋板塊和印度板塊三者復(fù)合的碰撞擠壓帶, 屬于揚(yáng)子克拉通(分區(qū)Ⅰ)、華南褶皺系(分區(qū)Ⅱ)、蘭坪-思茅褶皺系(分區(qū)Ⅲ)3 大主要構(gòu)造單元的交匯部位, 其北西以師宗-彌勒深大斷裂為界(終止于紅河斷裂), 其南以紅河斷裂為界(圖1)(王寶碌等, 2004).該區(qū)在地質(zhì)歷史中經(jīng)歷了復(fù)雜的地質(zhì)演化過程, 區(qū)內(nèi)多次構(gòu)造運(yùn)動(dòng)和強(qiáng)烈的巖漿活動(dòng)為該區(qū)多種礦產(chǎn)的形成提供了有利的地質(zhì)條件(莊永秋等, 1996).本區(qū)除有世界著名的以個(gè)舊錫礦為代表的滇東南錫礦帶之外, 銅礦資源也非常豐富.不同的成礦作用在不同的地質(zhì)時(shí)代于不同地質(zhì)構(gòu)造環(huán)境中孕育了多樣化的銅礦資源.
筆者系統(tǒng)收集了全國區(qū)域化探掃面計(jì)劃在本區(qū)的水系沉積物分析數(shù)據(jù), 樣品數(shù)4 524 個(gè), 按2 km ×2 km 網(wǎng)格密度等間距分布(58 行×78 列).EDA(ex plo rato ry data analy sis)(Tukey , 1977 ;Mar tinezand Ma rtinez , 2005)提供了優(yōu)秀的描述性統(tǒng)計(jì)和科學(xué)數(shù)據(jù)可視化分析技術(shù), 它的數(shù)據(jù)分析過程無需基于假設(shè)和模型.采用EDA 技術(shù)對4 524 個(gè)Cu 元素分析數(shù)據(jù)的統(tǒng)計(jì)分析見圖2 , 其上方圖形為直方圖和莖葉圖的疊合顯示, 下方為箱線圖, 在上側(cè)分布尾具有明顯的特異值.受測試分析精度所限, 本研究區(qū)Cu 元素含量值相等的樣品占有較大數(shù)量, 含量值為29 .8 的樣品出現(xiàn)頻數(shù)最多(即為眾數(shù), 其常用對數(shù)值為1 .471 2), 達(dá)20 次, 含量取值中僅有395個(gè)數(shù)據(jù)未有重復(fù)值, 占總數(shù)的8 .73 %(圖2).按照本文約定方法, 對Cu 元素含量數(shù)據(jù)按從高到低進(jìn)行排序, 得到順序值的序列記為R ANK (Raw), 稱為原始排序.圖3 展示了Cu 元素以R ANK (Raw)繪制的地球化學(xué)圖, 可見Cu 元素在分區(qū)II 具有大量高值, 相比之下, 分區(qū)Ⅰ 和Ⅱ的化探異常顯示較弱.
作者按三大構(gòu)造分區(qū)和地層(新生界、中生界、古生界、元古界, 巖漿巖按其侵入時(shí)代歸入對應(yīng)時(shí)代的地層中)將全區(qū)化探數(shù)據(jù)分成11 類, 繪制了multiboxplo t 圖, 并將區(qū)內(nèi)出現(xiàn)礦產(chǎn)位置處的樣品提取出來, 將其含量值投到對應(yīng)分組的bo xplot 圖上以反映銅礦資源容礦的主要層位(圖4).由圖4 可見, 多數(shù)分組的Cu 元素含量具有特異值, 不同分組含量的集中和離散程度具有較大差異.Cu 元素極值分布最明顯、容礦數(shù)量最多的分組出現(xiàn)在Ⅱ-Mz(及Ⅱ-Kz)、Ⅲ-Pt 和Ⅰ-Pt , 這三大類分屬不同的構(gòu)造分區(qū),Cu 元素含量的樣本統(tǒng)計(jì)量(如中位數(shù)、極差、IQR等)及特異值分布均表現(xiàn)出明顯的差異, 銅礦產(chǎn)不僅出現(xiàn)在含量高值區(qū), 在IQR 區(qū)間內(nèi)也出現(xiàn)較多數(shù)量, 甚至在低于Q1 的含量區(qū)間上也占有總數(shù)的7/55 .Cu 元素的空間分布和統(tǒng)計(jì)特征表明, 研究區(qū)地球化學(xué)場的分布復(fù)雜, 需要挖掘空間結(jié)構(gòu)、尺度特征等隱含在數(shù)據(jù)內(nèi)部的深層次信息才能獲得好的異常識別效果, 弱緩異常的識別是本區(qū)化探異常找礦的關(guān)鍵.筆者以異常襯度法和局部奇異性分析法為例, 介紹它們在本地區(qū)的應(yīng)用效果.
3 滑動(dòng)襯值和局部奇異性指數(shù)計(jì)算方法
3 .1 滑動(dòng)襯值
異常襯度又稱襯值(cont rast value), 其計(jì)算公式為:
CV(x)= za(x)/zb(x), (1)
其中, za(x)為x 位置處元素在異常范圍內(nèi)異常的平均值, zb(x)為x 位置處元素的背景平均值.對于網(wǎng)格化數(shù)據(jù), 經(jīng)常采用滑動(dòng)襯值進(jìn)行地球化學(xué)異常制圖, 背景值計(jì)算具體可分為常規(guī)滑動(dòng)平均和逐步剔除特異值(按三倍標(biāo)準(zhǔn)方差逐步截尾)2 種方法(熊光楚等, 1997).計(jì)算窗口的選擇具有一定人為性, 本文選取的異常范圍窗口大小為1 ×1(一個(gè)單元窗口大小為2 km ×2 km , 下同), 背景窗口大小為11 ×11 .背景平均值共分4 種情形進(jìn)行計(jì)算:原始數(shù)據(jù)常規(guī)滑動(dòng)平均計(jì)算襯值、原始數(shù)據(jù)逐步剔除特異值計(jì)算襯值、原始數(shù)據(jù)取常用對數(shù)后的常規(guī)滑動(dòng)平均計(jì)算襯值、原始數(shù)據(jù)取常用對數(shù)后的逐步剔除特異值計(jì)算襯值, 以上滑動(dòng)襯值計(jì)算結(jié)果分別表示為:
CV1 、CV2 、CV1(lg) 、CV2(lg).對其排序結(jié)果分別記為R ANK (CV1)、R ANK (CV2)、R ANK (CV1(lg))、R ANK(CV2(lg)).
3 .2 局部奇異性分析
局部奇異性度量模型可表示為(Cheng ,2006b ;陳志軍, 2007):
〈z(x , l))〉=c(x)(l/L)α(x)-E , (2)
其中, 〈〉表示統(tǒng)計(jì)期望, E 為空間維數(shù), L 為固定的最大尺度, z(x , l))為以x 為中心在l E 空間尺度范圍上某種元素的含量, 指數(shù)α(x)表示在位置x 處的奇異性指數(shù), 因子c(x)是在α(x)維空間中的“分形密度”(成秋明, 2008).
對于網(wǎng)格化數(shù)據(jù), 局部奇異性可按如下步驟計(jì)算:(a)由小到大確定滑動(dòng)平均窗口:l1 ×l1 , l2 ×l2 , … , lm ×lm , 得到m 幅滑動(dòng)平均圖, 記為Z1 ,Z2 , … , Zm .(b)取L =max {li }=ln , 其中i = 1 ,2 , …,m , 以lo g(Zi ×(li/ L)E)為因變量, log(li/ L)為自變量, 遍歷所有空間位置進(jìn)行最小二乘擬合, 回歸直線的斜率即該位置處的α值, 令l =L , 則回歸直線擬合值即為lo g(c)值.
本文選取的窗口大小序列為1 ×1 , 2 ×2 , …,11 ×11(最大窗口的范圍與計(jì)算滑動(dòng)襯值時(shí)背景窗口范圍大小相等, 共6 個(gè)), L =11 進(jìn)行局部奇異性指數(shù)的計(jì)算, 并轉(zhuǎn)換成Δα=E -α.分兩種情形進(jìn)行計(jì)算:原始數(shù)據(jù)直接計(jì)算和原始數(shù)據(jù)取常用對數(shù)后計(jì)算, 計(jì)算結(jié)果分別表示為Δα和Δα(lg).若元素含量值有小于1 的情形, 可將含量值擴(kuò)大10n 倍(可視
為含量單位的變化, 如由10-6換算成10-4), 使得最小值恰能滿足大于1 , 然后再取對數(shù)進(jìn)行計(jì)算.對Δα和Δα(lg)進(jìn)行排序, 序次分別記為R ANK (Δα)和R ANK(Δα(lg)).
3 .3 滑動(dòng)襯值和局部奇異性指數(shù)的統(tǒng)計(jì)分布特征對不同的異常指示變量進(jìn)行排序, 樣品可具有多種rank 值.對任一樣品, 也即具有以下空間位置信息和數(shù)據(jù)取值:
{x , y ;z (含量值), CV1 , CV2 , CV1(lg) , CV2(lg) ,Δα, Δα(lg);R ANK (Raw), R ANK (CV1), R AN K(CV2), R ANK(CV1(lg)), R ANK (CV2(lg)), R AN K(Δα), R AN K(Δα(lg))}.
圖6 Cu 元素滑動(dòng)襯值和局部奇異性指數(shù)的R ANK 值色塊圖Fig .6 Geochemical mapping fo r the gliding contr ast v alues and lo cal singularity ex po nents of Cu elementa .R AN K(CV2(lg));b .R AN K(Δα);c.R A NK(Δα(lg )).各色塊圖按相同的分類標(biāo)準(zhǔn)共分12 類, 該分類標(biāo)準(zhǔn)與圖3 相同Δα計(jì)算中R 2 擬合度的樣本統(tǒng)計(jì)量:mean =0 .995 1 , std = 0 .009 6 , min =0 .871 7 , max =1 .000 0 ;Δα(lg)計(jì)算中R2 擬合度的樣本統(tǒng)計(jì)量:
mean =0 .999 8 , std =0 .000 4 , min =0 .991 4 ,max =1 .000 0 .可見Δα(lg)比Δα在估值中回歸擬合優(yōu)度相對更高.CV1 ,CV2 , CV1(lg) ,CV2(lg) , Δα, Δα(lg)的統(tǒng)計(jì)分布特征見圖5 .本文不詳細(xì)闡述CV 和Δα之間差別.實(shí)際上, CV 的大小與計(jì)算窗口大小(也即尺度)有關(guān), 采用不同窗口大小來計(jì)算CV , 其取值可能差別很大.對Δα而言, 由于計(jì)算中采用了多尺度回歸技術(shù), 因此理論上Δα=E -α是與尺度無關(guān)的.若α的估值具有較高的擬合度, 則α和CV 存在如下關(guān)系:α∝log(z(lm)/z(l1))log(lm/ l1) ∝lo g(CV)(擬合度R2 ※1 時(shí)), 這種近似關(guān)系可反映在圖5a 所示的X-Y plo t 圖中.當(dāng)滑動(dòng)襯值和局部奇異性指數(shù)的計(jì)算考慮更多因素, 例如借助空間U 統(tǒng)計(jì)量法在不同尺度上用各向異性的窗口(橢圓狀)代替方形窗口進(jìn)行局部奇異性指數(shù)的計(jì)算, 此時(shí)的局部奇異性指數(shù)和滑動(dòng)襯值就可能存在較大的差異, 異常識別的效果也將有所不同(陳志軍, 2007).在圖5a 所示的X-Y plo t 圖中, 各個(gè)橫軸變量的高值部分和低值部分相關(guān)程度均有所差異.從異常識別角度, 主要關(guān)注這些變量的高值部分.
各種異常指示變量采用不同的分類標(biāo)準(zhǔn)與圖面著色方案可以制作多種形式的地球化學(xué)圖, 為便于比較, 筆者應(yīng)用與R ANK(R aw)相同的分類標(biāo)準(zhǔn)和顏色渲染方案對以上滑動(dòng)襯值和局部奇異性指數(shù)的排序值分別進(jìn)行了地球化學(xué)制圖(圖6), R ANK(Raw ) 、R ANK (CV 1 ) 、R ANK (CV 2 )、R AN K(CV1(lg))、R ANK (CV2(lg))、R AN K (Δα)、R AN K(Δα(lg))的地球化學(xué)圖總體特征大體類似, 但在局部位置具有一定差異性.圖6 是CV1(lg) 、Δα和Δα(lg)關(guān)于rank 值分類的地球化學(xué)色塊圖, 從中可見它們均顯著降低了分區(qū)Ⅱ中的高背景, 同時(shí)還突出了分區(qū)Ⅰ和Ⅲ的異常顯示.對CV 和Δα之間異常識別效果的細(xì)節(jié)差異在排序值的地球化學(xué)圖中尚不能清晰辨別, 下面筆者就3 個(gè)方面來比較不同處理方法之間的異常識別效果.
4 討論
4 .1 高背景區(qū)和低背景區(qū)不同異常指示變量的排序特征筆者取R ANK (R aw)前1 .25 %的樣品(56個(gè)), 這些樣品主要分布在圖1 的分區(qū)Ⅱ , 圖7a 所示的X-Y plot 圖展示了在高背景區(qū)R ANK (Raw)、R AN K (CV1)、R ANK (CV2)、R ANK (CV1(lg))、R AN K(CV2(lg))、R AN K(Δα)和R AN K(Δα(lg))之間的異同.從圖7 中可見, 這些原始排序相對靠前的樣品, 僅有較少的樣品在CV 和Δα的樣本排序中仍然靠前, 較多樣品的排序都被下調(diào).下調(diào)的幅度以R AN K(Δα)和R ANK(CV1)為最.這56 個(gè)高背景樣品中有部分樣品的Δα值小于0 , 從局部奇異性角度被識別為負(fù)異常.筆者由lg(Cu)的第1 四分位數(shù)1 .357 9 向低值區(qū)也取56 個(gè)樣品, 這些樣品主要分布在分區(qū)Ⅰ和Ⅲ , 從圖7b 的X-Y Plo t 圖可見, 其對原始排序的改變情形和圖7a 恰好相反, 這些原始排序相對靠后的樣品, 較多樣品的CV 和Δα的樣本排序被上調(diào), 部分Δα值大于0 、CV 值大于1 可被篩選為異常.從圖7 可見, 滑動(dòng)襯值方法和局部奇異性分析方法具有壓制高背景、突出弱緩異常的效果.
4 .2 有礦位置處化探樣品不同異常指示變量的排序特征筆者采用與圖7 一樣的比較策略, 將研究區(qū)中已知礦產(chǎn)地位置處所對應(yīng)的55 處樣品提取出來, 進(jìn)而比較各類方法的排序值(圖8).從圖8a 可見, 在原始排序靠前的10 個(gè)樣品(top 3 %), 滑動(dòng)襯值和局部奇異性指數(shù)的排序值略有不同, 改變幅度不大,CV 值和Δα值仍在異??杀伙@著識別的區(qū)間內(nèi);而后面45 個(gè)樣品(R ANK (Raw)=100 之后), 襯值、局部奇異性指數(shù)對原始排序的改變幅度都很大.從表1 可見, 在相對低背景區(qū), 不同異常指示變量總體上排序值升高者比降低者明顯多, 其中以Δα(lg)的rank 值升高的樣品個(gè)數(shù)最多, 約占64 %, 這使得在低背景中的某些樣品有可能被識別出來.圖8b 是按R ANK(Δα)升序排列比較, 在Δα>0 的有礦出現(xiàn)位置處的32 個(gè)樣品中(CV2(lg)值也都大于1), Cu 元素含量值變化范圍較大, 最高者達(dá)6 046 .3 ×10-6 ,而低者僅為33 .5 ×10-6 , 這反映襯值和局部奇異性指數(shù)對弱緩異常識別的有效性.有部分異常樣品用襯值和局部奇異性指數(shù)仍然難于識別, 這可能與水系沉積物所獲的異常與真實(shí)異常源之間具有不同程度的位移有關(guān), 也可能由于CV 和Δα計(jì)算中需要考慮各向異性、地質(zhì)構(gòu)造背景的控制作用等因素, 當(dāng)然還受異常下限確定方法的影響.
4 .3 不同異常指示變量等面積含礦率比較與最佳異常下限確定對已有較多已知礦產(chǎn)發(fā)現(xiàn)的地區(qū)進(jìn)行礦產(chǎn)資源定量預(yù)測工作中, 常將最大含礦率及最小漏礦率作為圈定遠(yuǎn)景區(qū)或靶區(qū)的準(zhǔn)則之一.這里采用證據(jù)權(quán)法來對各類異常識別模型圈定礦床(點(diǎn))的效果進(jìn)行比較.筆者對R ANK(Raw)、R AN K(CV1)、R ANK(CV2)、R ANK (CV1(lg))、R ANK (CV2(lg))、R ANK(Δα)和R ANK(Δα(lg))都采用相同的分類標(biāo)準(zhǔn), 高rank 區(qū)間具有更小的分組間距, 以更精細(xì)地反映高異常區(qū)的變化性, 共分68 組不同的面積累積范圍(對于原始排序, 有些樣品具有相同R ANK 值, 約定取中位數(shù)), 從圖2 所示莖葉圖可見最多的重復(fù)出現(xiàn)20 次, 用rank/4 524 ×100 %來計(jì)算累積面積百分比(實(shí)際累積面積的誤差可忽略不計(jì)).在每一分類區(qū)間, 計(jì)算t 統(tǒng)計(jì)量, 其公式為:t =C/s(C), 其中C =W + -W - ,C 稱為對比度, 反映證據(jù)圖層同礦產(chǎn)的空間相關(guān)性大小,W +和W -分別稱為證據(jù)正權(quán)和證據(jù)負(fù)權(quán), s(C)為對比度C 的標(biāo)準(zhǔn)方差.t 值越大,說明在該累積面積上化探異常與礦化關(guān)系空間相關(guān)的顯著性程度越高.從圖9 所示的累積面積-t 統(tǒng)計(jì)量關(guān)系圖可見, 在前50 %累積面積的那些分組中,R ANK(CV1)、R ANK(CV2)、R ANK(CV1(lg))、R AN K(CV2(lg))、R ANK(Δα)和R ANK(Δα(lg))的t曲線幾乎都在R AN K(Raw)的t 曲線上方, 也即無論按多少異常面積來進(jìn)行比較, 襯值和局部奇異性指數(shù)的礦化異常識別效果將明顯優(yōu)于元素含量值的效果.在1 .25 %、21 %累積面積附近, R ANK(CV 1)、R ANK (CV2)、R ANK (CV 1(lg))、R ANK(CV2(lg))、R ANK (Δα)和R AN K(Δα(lg))的t 曲線呈現(xiàn)上凸形狀, 而R ANK(R aw)的t 曲線則反呈下凹形狀, 在3 %累積面積附近, R ANK (Δα)和R ANK (CV 1 )的t 曲線形狀呈現(xiàn)為上凸而R AN K (Raw )的t 曲線則反呈下凹形狀;而在72 .5 %累積面積附近, R AN K(Raw)的t 曲線與其他的t 曲線與前50 %累積面積的凸凹情況則相反.
這說明應(yīng)用元素含量圈定異常, 在高背景區(qū)進(jìn)行空間統(tǒng)計(jì)分析時(shí), 面積的顯著增加不能保證發(fā)現(xiàn)礦產(chǎn)數(shù)量的同步增長;而在低背景處, 則可能出現(xiàn)較多的礦床(點(diǎn)), 這使得t 曲線的變化趨勢復(fù)雜多變, 很難根據(jù)R ANK(Raw)的t 曲線確定一個(gè)合適的異常范圍, 即異常下限難于確定.而對于襯度異常和局部奇異性指數(shù)來說, 其排序的t 曲線的總體變化趨勢均為:隨著累積面積的增大, t 曲線不斷向上攀升并達(dá)到頂峰(明顯高于1 .96), 然后再不斷下降.由于本研究區(qū)中成礦環(huán)境的復(fù)雜性, R ANK (CV1)、R ANK(CV2)、R ANK (CV1(lg))、R ANK(CV2(lg))、R ANK(Δα)和R ANK(Δα(lg))的t 曲線表現(xiàn)出一定的局部波動(dòng), 以R ANK (Δα)的t 曲線為例, 在1 .25 %、4 %、11 %、19 %、26 %累積面積處(rank =56 , 180 , 497 , 859 , 1 176)t 曲線分別達(dá)到局部極大值, 在其面積內(nèi)包含的礦床(點(diǎn))與發(fā)現(xiàn)礦產(chǎn)占總數(shù)比值依次為10/55 、15/55 、19/55 、26/55 和29/55 .
盡管在某些位置, R ANK (CV1)、R AN K (CV2)、R ANK (CV1(lg))、R ANK (CV2(lg))的t 值略高于R ANK (Δα)和R ANK(Δα(lg)), 但總體說來,R ANK(Δα)相對更佳, 其t 曲線在前30 %面積內(nèi)相對其他曲線始終保持較高的t 值.在R ANK (Δα)的t 曲線圖上確定以累積面積4 %, 11 %, 19 %作為分級閾值, 在R ANK(Δα)地球化學(xué)色塊圖上經(jīng)雙線性插值生成光滑平面圖, 以rank =859(累積面積百分比19 %, Δα=0 .054)作為異常下限, 圈定了化探異常遠(yuǎn)景區(qū)(圖10).從圖10 可見, 化探異常空間分布與多數(shù)已知礦床(點(diǎn))分布的空間吻合程度較高, 在3個(gè)不同分區(qū)化探異常都有較好的顯示, 對比圖3 的高異常區(qū)基本集中分布在分區(qū)Ⅱ , R ANK (Δα)所圈定的異常圖很好地抑制了三疊系的高背景影響, 分區(qū)Ⅰ 和分區(qū)Ⅲ中一些低緩異常被較好圈定, 對未知礦床的預(yù)測提供了元素含量值所不具備的有用信息, 比用元素含量值圈定異常遠(yuǎn)景區(qū)更具預(yù)測意義.
用R ANK(CV1)、R ANK(CV2)、R ANK(CV1(lg))、R AN K(CV2(lg))和R ANK(Δα(lg))所確定的異常遠(yuǎn)景區(qū)與R AN K(Δα)所圈定的在總體上是一致的, 這也從一個(gè)側(cè)面反映了利用Δα圈定異常的可靠性.
5 結(jié)論
對元素含量、滑動(dòng)襯值、局部奇異性指數(shù)這些不同的異常指示變量獲取其樣本排序取值, 可以消除分布特征和量綱的影響, 在等面積條件下進(jìn)行相對異常強(qiáng)度的比較, 對個(gè)舊及其周邊地區(qū)銅元素的水系沉積物應(yīng)用結(jié)果表明, 利用樣本排序方法比較異常識別模型的效果是一種可行的方法, 這種方法可推廣應(yīng)用到其他化探異常識別模型的效果對比中.
異常識別模型壓制高背景、突出低緩異常的能力可從它相對樣品原始排序的優(yōu)化調(diào)整情況中反映出來.在高背景區(qū), CV 和Δα對于樣品原始排序具有顯著的降低作用;在低背景區(qū), CV 和Δα對于樣品原始排序具有提升排序的能力.在圈定異常范圍時(shí),CV 和Δα由于降低了高背景區(qū)樣品的排序, 避免了非礦異常面積的大量增加, 而代之以其他空間位置處弱緩異常面積的增加, 從而保持其異常范圍與礦床(點(diǎn))分布具有較高程度的空間相關(guān)性, 因此,CV 和Δα這兩類方法對識別弱緩異常識別具有較好的能力.在本研究區(qū), 通過Δα圈定了化探異常遠(yuǎn)景區(qū), 并被滑動(dòng)襯值方法的結(jié)果所佐證, 具有較高的可信度, 在本區(qū)三個(gè)截然不同的地質(zhì)構(gòu)造環(huán)境分區(qū)中都確定了一定面積的異常遠(yuǎn)景區(qū), 比用元素含量值來圈定更具預(yù)測意義, 可為該區(qū)的銅礦資源找礦工作提供參考.局部奇異性分析方法是一種非常有效的弱緩異常識別方法.Δα可以通過原始數(shù)據(jù)直接計(jì)算, 也可取對數(shù)后計(jì)算, 在本研究區(qū)Δα通過原始數(shù)據(jù)直接計(jì)算為更佳.總體而言, 局部奇異性方法原理清晰、方法簡便、可操作性強(qiáng), 在地球化學(xué)異常識別中完全可以用其替代滑動(dòng)襯值方法.
此外, 相對直方圖、Q-Q 圖等簡單的統(tǒng)計(jì)圖形,利用當(dāng)今先進(jìn)的計(jì)算機(jī)技術(shù), EDA 分析技術(shù)(bo xplo t ,mat rix plo t 等)可展現(xiàn)更豐富的數(shù)據(jù)信息, 例如離群值分布, 在化探數(shù)據(jù)分析處理中值得廣泛推廣應(yīng)用.